若A,B均为n阶矩阵,且AB=BA,证明:如果A,B都相似于对角矩阵,则存在可逆矩阵C使C^1AC与C^1BC均为对角矩

2个回答

  • A,B满足上述条件称为同时对交化.

    当且仅当A,B可交换,A,B可同时对角化.

    具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-1)AC

    故A,B可交换.

    如果A,B可交换,设C可以将A对角话,且对角化后相同的特征值在一起,那么C1^(-1)AC1是一个对角矩阵,C1^(-1)BC1是一个矩阵.

    显然这两个是可交换,故无妨设P=C1^(-1)AC,Q=C1^(-1)BC1,那么考虑PQ=QP的特点,不难发现,在P的分块下(相同的值作为一个分块,构成一个对角分块),Q也构成一个分块形状一致的对角分块,那么将Q对角话(C2^(-1)QC2是对角的)的话不影响P是一个对角矩阵.那么记C=C2C1他可以同时将A,B对角化.