(1)证法一:
如图①,∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥ABMN⊥AC,∴∠PQA=∠ANM=90°
∴AQ=MN,∴△AQP≌△MNA
∵AN=PQAM=AP,∴∠AMB=∠APM
∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分线的性质),
∴PC=AN;
证法二:
如图①,∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB,∴∠APQ=90°=∠ANM
∴AQ=MN,∴△PQA≌△ANM
∴AP=AM,PQ=AN,∴∠APM=∠AMP
∵∠AQP+∠BAM=180°,∴PQ∥MA
∴∠QPB=∠AMP
∴∠APM=∠BPC,∴∠QPB=∠BPC
∴∠BQP=∠BCP=90°,BP=BP
∴△BPQ≌△BCP
∴PQ=PC,∴PC=AN.
(2)解法一:
如图②,∵NP=2PC=3,∴由(1)知PC=AN=3
∴AP=NC=5AC=8,∴AM=AP=5
∴AQ=MN=
=4
∵∠PAQ=∠AMN∠ACB=∠ANM=90°
∴∠ABC=∠MAN
∴tan∠ABC=tan∠MAN=
=
∵tan∠ABC=
,∴BC=6
∵NE∥KC,∴∠PEN=∠PKC,
又∵∠ENP=∠KCP,∴△PNE∽△PCK,
∴
=
,∴CK:CF=2:3,
设CK=2k,则CF=3k
∴
=
,NE=
k.
过N作NT∥EF交CF于T,则四边形NTFE是平行四边形
∵NE=TF=
k,∴CT=CF﹣TF=3k﹣
k=
k
∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF,∴∠BPC=∠BFH
∵EF∥NT,∴∠NTC=∠BFH=∠BPC
tan∠NTC=tan∠BPC=
=2,∴tan∠NTC=
=2,
∴CT=
k=
,∴k=
,∴CK=2×
=3,BK=BC﹣CK=3
∵∠PKC+∠DKC=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKC
tan∠PKC=
=1,∴tan∠BDK=1.
过K作KG∥BD于G
∵tan∠BDK=1,tan∠ABC=
,∴设GK=4n,则BG=3n,GD=4n
∴BK=5n=3,∴n=
,∴BD=4n+3n=7n=
∴AB=
=10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣
解法二:
如图③,∵NP=2,PC=3,∴由(1)知PC=AN=3
∴AP=NC=5,AC=8,∴AM=AP=5
∴AQ=MN=
=4
∵NM∥BC,∴∠NMP=∠PBC
又∵∠MNP=∠BCP,∴△MNP∽△BCP
∴
=
,∴
=
BC=6
作ER⊥CF于R,则四边形NERC是矩形
∴ER=NC=5,NE=CR
∵∠BHE=∠BCR=90°
∴∠EFR=90°﹣∠HBF∠BPC=90°﹣∠HBF
∴∠EFR=∠BPC,∴tan∠EFR=tan∠BPC,∴
=
,即
=
∴RF=