(1)AE2+BF2=EF2,理由为:
连接CD,
∵AC=BC,∠ACB=90°,D为AB的中点,
∴CD=AD=BD=1/2AB
∠A=∠DCF=45°,
∵∠ADE+∠CDE=90°,
又∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
∠A=∠DCF=45°AD=CD∠ADE=∠CDF
∴△ADE≌△CDF(ASA),
∴AE=CF,又AC=BC,
∴AC-AE=BC-CF,即CE=BF,
在Rt△CEF中,根据勾股定理得:CE2+CF2=EF2,
则AE2+BF2=EF2;
(2)如图(2)当DE不与AC垂直时(1)的结论成立,理由为:
连接CD,
∵AC=BC,∠ACB=90°,D为AB的中点,
∴CD=AD=BD=1/2AB
∠A=∠DCF=45°,
∵∠ADE+∠CDE=90°,
又∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
∠A=∠DCF=45°AD=CD∠ADE=∠CDF
∴△ADE≌△CDF(ASA),
∴AE=CF,又AC=BC,
∴AC-AE=BC-CF,即CE=BF,
在Rt△CEF中,根据勾股定理得:CE2+CF2=EF2,
则AE2+BF2=EF2;