PB^2=PA^2+AB^2=5
PD^2=PA^2+AD^2=13
PC^2=PA^2+AC^2=PA^2+AB^2+AD^2=17
得:PB^2+PD^2-PC^2=PA^2=1,PA=1
AB=2,AD=2√3,AC=4
作AE垂直BD于E,则AE=AB*AD/BD=AB*AD/AC=√3
P到BD距离PE=√(PA^2+AE^)=√(1+3)=2
PB^2=PA^2+AB^2=5
PD^2=PA^2+AD^2=13
PC^2=PA^2+AC^2=PA^2+AB^2+AD^2=17
得:PB^2+PD^2-PC^2=PA^2=1,PA=1
AB=2,AD=2√3,AC=4
作AE垂直BD于E,则AE=AB*AD/BD=AB*AD/AC=√3
P到BD距离PE=√(PA^2+AE^)=√(1+3)=2