解题思路:先根据抛物线方程求出其准线与焦点坐标,在与抛物线的性质可得到当点P为(0,1)点与(2,0)点的连线与抛物线的交点时,距离和最小,最后根据两点间的距离公式得到答案.
y2=4(x-1)的图象是以y轴为准线,(2,0)为焦点的抛物线,∴当点P为(0,1)点与(2,0)点的连线与抛物线的交点时,距离和最小,
最小值为:
(2-0)2+(0-1)2=
5.
故答案为:
5.
点评:
本题考点: 抛物线的应用.
考点点评: 本题主要考查抛物线的基本性质和两点间的距离公式的应用.抛物线的简单性质是高考的重点,考题一般不难,但是灵活性要求比较高.