做出来啦!
自点D作对对角线AC的垂线,垂足为B',自点D作AB边垂线,垂足为C',自点D作BC边的垂线.垂足为A'
(1)OC'=DB/2=OA'=OB
故∠OC'B+∠OA'B=∠OBC'+∠OBA'=∠CBA
(a)第一种情况,A'在线段BC上
∠C'OA'=360-(∠OC'B+∠OA'B)-∠CBA=360-2∠CBA
(b)第二种情况,A'在CB延长线上
∠C'OA=2∠ABD-∠AOD
∠C'OA'=∠OA'C+∠BCA-∠C'OA=∠BAD+∠ABD+∠BCA-(2∠ABD-∠AOD)=∠BAD+∠BCA+∠CAB=2∠BAD=360-2∠CBA
又OC'=DB/2=OA'
∠OC'A'=∠OA'C'=(180-(360-2∠CBA))/2=∠CBA-90
(2)DC'垂直于AB,DB'垂直于AC
故D、C'、B'、A四点共圆
∠DB'C'=180-∠DAC'=∠CBA,故∠AB'C'=∠CBA-90=∠OA'C'
∠AB'C'=∠OA'C'
故O、A'、B'、C'四点共圆
不懂的话欢迎追问!
A'在线段BC上的情形如下: