求曲线r=(√2 +1)sinθ和r=1+cosθ的交点θ和所围成的面积

1个回答

  • Let (√2 + 1) sin θ = 1 + cos θ

    (3 + 2√2) sin² θ = 1 + 2 cos θ + cos² θ

    (3 + 2√2) (1 - cos² θ) = 1 + 2 cos θ + cos² θ

    (2 + √2) cos² θ + cos θ - (√2 +1) = 0

    cos θ = √2 / 2, θ = ¼ π , or

    cos θ = 1, θ = π

    So the area overlaped (重复区域的面积)

    = ∫ (θ:0→¼ π) ∫[θ:0→(√2 + 1)sin θ rdr ]dθ

    + ∫ (θ:¼ π→π) ∫[θ:0→(1 + cos θ) rdr ]dθ

    = ¼(3 + 2√2)(¼π - ½) + 9π/16 - 1/√2 - 1/8

    = ¾ π - ½ - ¾ √2 + √2 π/8

    ≈ 1.35089

    曲线 r = (√2 + 1) sin θ 所围成的面积

    = ¼(3 + 2√2)π

    曲线 r = 1 + cos θ 所围成的面积

    = 2 ∫ (θ:0→π) ∫[θ:0→1+cos θ] rdr dθ

    = ³/₂π

    总面积:

    Total Area = ¼(3 + 2√2)π + ³/₂π - [¾ π - ½ - ¾ √2 + √2 π/8]

    = ³/₂π + ½ + (3√2)π/8 + ¾ √2

    ≈ 7.9391