解题思路:充分运用“r(A)=r(A b)=n时,Ax=b有唯一解”和“r(A)=r(A b)<n时,Ax=b有无穷多解”,以及““r(A)<r(A b)时,Ax=b无解”,就可得出答案.
解;
∵线性方程组Ax=b有解⇔r(A)=r(Ab),
并且由题知A是m行n列的矩阵,
①对于选项A.
若r(A)=m,
则A是一个行满秩矩阵,
因此在A的每一行后面添加一个分量,得到矩阵(A b)的m个行向量,并不会改变它的秩,即r(A b)=m,
从而:r(A)=r(A b)=m,
故当r=m时,方程组Ax=b有解,
∴选项A正确.
②对于选项B.
如:A=
10
01
11,(Ab)=
100
010
111
,
显然 r(A)=2(未知数个数),但r(A)<r(A b)=3,此时方程组无解,
∴选项B错误.
③对于选项C.
如:A=
11
22,(Ab)=
111
222,
显然r(A)=r(A b)=1<2,此时Ax=b有无穷多解,
∴选项C错误.
④对于选项D.
如:A=
11
22,(Ab)=
111
221,
显然r(A)=1<r(A b)=2,此时Ax=b无解,
∴选项D错误.
故选:A.
点评:
本题考点: 非齐次线性方程组有非零解的充分必要条件.
考点点评: 此题是考查非齐次线性方程组解的判定定理的运用,熟悉相关定理,就能较快解决此问题.