函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
1个回答
设F(x)=f(x)-f(x+a)
则F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)=f(a)-f(0)
所以F(0)×F(a)小于0
根据零点定理有E使F(E)=0即结果
相关问题
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
一道函数连续的证明题f(x)在[0,2a]上连续,f(0)=f(2a).证明 f(x)=f(x+1) 在[0,a]上至少
设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左
介值定理的问题函数f(x)在[0,2a]上连续,且f(0)=f(2a),证明:在[0,2a]上至少存在一点ξ,使f(ξ)
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
7.设f(x)在[0,2a] 上连续,f(0)=f(2a) ,证明方程f(x)=f(x+a) 在(0,a) 内至少有一个
设函数f(x)在区间[a,b]上连续,且f(a)b.证明:至少存在一点ξ∈(a,b),使得……高等数学(上)…
若f(x)在[0,a]上连续,在(0,a)内可导,a>0,且f(0)=1,f(a)=0,证明(1)至少存在一点&属于(0