将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”.直角三角形中,直角边边长

1个回答

  • 解题思路:本题考查的知识点是类比推理,在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;故由:“直角三角形中,直角边边长为a,b,斜边边长为c,直角三角形具有性质:c2=a2+b2.”(边的性质),类比到空间可得的结论是“在直角三棱锥中,直角面面积分别为S1,S2,S3,斜面面积为S”,S12+S22+S32=S2

    在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:

    由平面几何中点的性质,类比推理空间几何中线的性质;

    由平面几何中线的性质,类比推理空间几何中面的性质;

    由平面几何中面的性质,类比推理空间几何中体的性质;

    故由:“直角三角形中,直角边边长为a,b,斜边边长为c,直角三角形具有性质:c2=a2+b2.”(边的性质),

    类比到空间可得的结论是“在直角三棱锥中,直角面面积分别为S1,S2,S3,斜面面积为S”,S12+S22+S32=S2
    故答案为:S12+S22+S32=S2

    点评:

    本题考点: 类比推理.

    考点点评: 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.