解题思路:当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.对m1受力分析,有m1g=k1x+k2x,得出伸长量和压缩量x.对物体m2受力分析有:FN=m2g+k2x,再结合牛顿第三定律,求出物体对平板的压力FN′.
当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,
对m1受力分析得:m1g=k1x+k2x…①
对平板和m1整体受力分析得:
FN=m2g+k2x…②
根据牛顿第三定律,有
FN′=FN…③
解得
FN′=
k2m1g
k1+k2+m2g;
故选:B.
点评:
本题考点: 共点力平衡的条件及其应用;力的合成与分解的运用.
考点点评: 求出本题的关键知道当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.