(1)AC为正方形ABCD的对角线,
∠ACD=45°,即∠ACE=90°+45°=135°,
∵AC=CE,即∠E=∠CAF,
∴∠E=
180°-135°
2 =22.5°;
(2)AB=2cm,则AC=
2 AB= 2
2 cm,
∴CE=2
2 cm,
∴S △ACE=
1
2 AB×BE=
1
2 ×2(2
2 +2)cm 2=(2
2 +2)cm 2,
故答案为:22.5°,2
2 +2.
(1)AC为正方形ABCD的对角线,
∠ACD=45°,即∠ACE=90°+45°=135°,
∵AC=CE,即∠E=∠CAF,
∴∠E=
180°-135°
2 =22.5°;
(2)AB=2cm,则AC=
2 AB= 2
2 cm,
∴CE=2
2 cm,
∴S △ACE=
1
2 AB×BE=
1
2 ×2(2
2 +2)cm 2=(2
2 +2)cm 2,
故答案为:22.5°,2
2 +2.