(a^3-3ab^2+2b^3)/(a+2b)
=(a³-ab²-2ab²+2b³)/(a+2b)
=[a(a+b)(a-b)-2b²(a-b)]/(a+2b)
=[(a-b)(a²+ab-2b²)]/(a+2b)
=[(a-b)(a-b)(a+2b)]/(a+2b)
=(a-b)²
(a^3-3ab^2+2b^3)/(a+2b)+|a^2+3ab+2b^2-6|=0
(a-b)²+|a²+3ab+2b²-6|=0
则,a-b=0,且a²+3ab+2b²-6=0
由a-b=0,得a=b,
代入,a²+3ab+2b²-6=0,
a²+3a²+2a²-6=0
a²=1
解得a=±1