已知等差数列an的前n项和为Sn,且对于任意的正整数n满足2根号下Sn=(an)+1

2个回答

  • 1.

    2√Sn=an+1

    4Sn=(an)^2+2an+1

    4S1=(a1)^2+2a1+1=4a1,

    a1=1

    4S(n-1)=[a(n-1)]^2+2a(n-1)+1

    4an=4[sn-s(n-1)]=(an)^2+2an-[a(n-1)]^2-2a(n-1)

    (an)^2-2an-[a(n-1)]^2-2a(n-1)=0

    [an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0

    [an+a(n-1)][an-a(n-1)-2]=0

    an+a(n-1)=0或an-a(n-1)-2=0

    an=a1(-1)^(n-1)=(-1)^(n-1)

    或an=a1+2(n-1)=2n-1

    经检验都符合题意

    所以

    an=(-1)^(n-1)或an=2n-1.

    2.

    bn=1/[ana(n+1)]

    2-1,当an=(-1)^(n-1)时,

    bn=1/[ana(n+1)]

    =1/{[(-1)^(n-1)][(-1)^n]}

    =1/[(-1)^(2n-1)]

    =-1

    Bn=-1*n=-n;

    2-2,当an=2n-1时,

    bn=1/[ana(n+1)]

    =1/[(2n-1)(2n+1)]

    =(1/2)[1/(2n-1)-1/(2n+1)]

    2bn=1/(2n-1)-1/(2n+1)

    2b(n-1)=1/(2n-3)-1/(2n-1)

    2b(n-2)=1/(2n-5)-1/(2n-3)

    2b(n-3)=1/(2n-7)-1/(2n-5)

    ……

    2b3=1/5-1/7

    2b2=1/3-1/5

    2b1=1/1-1/3

    两边相加:

    2Bn=2[b1+b2+b3+……+b(n-3)+b(n-2)+b(n-1)+bn]

    =1-1/(2n+1)

    =2n/(2n+1)

    Bn=n/(2n+1).

    综上所述

    an=(-1)^(n-1)时,Bn=-n

    an=2n-1时,Bn=n/(2n+1).