答:
设t=√(1-x),t^2=1-x,x=1-t^2
x=0,t=1
x=1,t=0
原式
=(1→0) ∫[(1-t^2)^2/t]d(1-t^2)
=(0→1) 2∫[(1-2t^2+t^4)/t] dt
=(0→1) 2∫(1-2t^2+t^4)dt
=(0→1) 2[t-(2/3)t^3+(1/5)t^5]
=2*(1-2/3+1/5)-0
=12/5-4/3
=16/15
答:
设t=√(1-x),t^2=1-x,x=1-t^2
x=0,t=1
x=1,t=0
原式
=(1→0) ∫[(1-t^2)^2/t]d(1-t^2)
=(0→1) 2∫[(1-2t^2+t^4)/t] dt
=(0→1) 2∫(1-2t^2+t^4)dt
=(0→1) 2[t-(2/3)t^3+(1/5)t^5]
=2*(1-2/3+1/5)-0
=12/5-4/3
=16/15