证明,ΔDAB全等于ΔEAC
理由AC=AB,AE=AD.∠DAB=∠EAC
故CE=BD
设CE与BD交于点O.
有ΔDAB全等于ΔEAC
∠BDA=∠CEA
所以∠ADE+ ∠AED=∠ADB+∠BDE+∠AED=∠AEC+∠BDE+∠AED=∠BDE+∠DEC=90°
即∠DOE=90°
即 CE⊥BD.
证明,ΔDAB全等于ΔEAC
理由AC=AB,AE=AD.∠DAB=∠EAC
故CE=BD
设CE与BD交于点O.
有ΔDAB全等于ΔEAC
∠BDA=∠CEA
所以∠ADE+ ∠AED=∠ADB+∠BDE+∠AED=∠AEC+∠BDE+∠AED=∠BDE+∠DEC=90°
即∠DOE=90°
即 CE⊥BD.