已知抛物线y=x2-x-2交X轴点A(-1,0)交Y轴点C(0,-2)在对称轴上是否存在点P使△PAC为直角三角形,求点

1个回答

  • y = (x + 1)(x - 2)

    对称轴x = (-1 + 2)/2 = 1/2

    P(1/2,p)

    AC² = (-1 - 0)² + (0 + 2)² = 5

    AP² = (-1 - 1/2)² + (0 - p)² = p² + 9/4

    PC² = (1/2 - 0)² + (p + 2)² = p² + 4p + 17/4

    (1) AC² + AP² = PC²

    5 + p² + 9/4 = p² + 4p + 17/4

    p = 3/4,P(1/2,3/4)

    (2) AP² + PC² = AC²

    p² + 9/4 + p² + 4p + 17/4 = 5

    4p² + 8p + 3 = 0

    (2p + 3)(2p + 1) = 0

    p = -3/2,P(1/2,-3/2)

    p = -1/2,P(1/2,-1/2)

    (3)AC² + PC² = AP²

    5 + p² + 4p + 17/4 = p² + 9/4

    p = -7/4

    P(1/2,-7/4)