【解】作PQ⊥MN,交点为Q.设MN中点为O.
由tanPMN=1/2可知PQ=1/2MQ,tanMNP=2可知PQ=2NQ.
以O为远点MN为X轴建立坐标系,设M(-c,0),N(c,0)(设c>0).
由于MQ=2PQ=4NQ,可得Q(0.6c,0),P(0.6c,0.8c).
设椭圆方程为x2/a2+y2/(a2-c2)=1.
因为△PMN面积为1,故1/2*2c*0.8c=1,解得c=√5/2.
将P点代入椭圆方程,解得a.由此得到椭圆方程.
【解】作PQ⊥MN,交点为Q.设MN中点为O.
由tanPMN=1/2可知PQ=1/2MQ,tanMNP=2可知PQ=2NQ.
以O为远点MN为X轴建立坐标系,设M(-c,0),N(c,0)(设c>0).
由于MQ=2PQ=4NQ,可得Q(0.6c,0),P(0.6c,0.8c).
设椭圆方程为x2/a2+y2/(a2-c2)=1.
因为△PMN面积为1,故1/2*2c*0.8c=1,解得c=√5/2.
将P点代入椭圆方程,解得a.由此得到椭圆方程.