已知a>0,f(x)=ax^2-2x+1+ln(x+1),l是曲线y=f(x)在p(0,f(0))处的切线.

1个回答

  • 第一问结果为y=-x+1

    第二问切线l与f(x)有且仅有一个公共点

    等价于

    函数g(x)=f(x)-(-x+1)=ax^2-x+ln(x+1),易得g(0)=0

    g(x)的定义域为(-1,正无穷)

    g′(x)=2ax-1+1/(x+1)=2ax(x+1-1/2a)/(x+1)

    当1/2a-1<0,g(x)在(-,1/2a-1)单调递增,在(1/2a-1,0)上单调递减,显然当x趋于-1,y趋向负无穷,g(1/2a-1)>g(0),所以(-1,1/2a-1)区间内有一根,加上已有0这个根,就超过一个根了,所以1/2a-1<0不成立

    当1/2a-1>0,g(x)在(-1,0)单调递增,在(0,1/2a-1)单调递减,

    有g(1/2a-1)<g(0)=0,但是当x→正无穷是,g(x)>0,所以g(x)在(1/2a-1,正无穷)上还有一根,所以1/2a-1>0不成立.

    当1/2a-1=0时,g(x)在(-1,正无穷)上单调递增,满足题意

    所以a=1/2