f(x)=9^x-(k+1)3^x+1=(3^x)^2-(k+1)3^x+1=[3^x-(k+1)/2]^2+1-[(k+1)/2]^2
1、若(k+1)/2>0也即k>-1,则有
f(x)=[3^x-(k+1)/2]^2+1-[(k+1)/2]^2≥1-[(k+1)/2]^2
要想f(x)>0恒成立,必须有
1-[(k+1)/2]^2>0
-1
f(x)=9^x-(k+1)3^x+1=(3^x)^2-(k+1)3^x+1=[3^x-(k+1)/2]^2+1-[(k+1)/2]^2
1、若(k+1)/2>0也即k>-1,则有
f(x)=[3^x-(k+1)/2]^2+1-[(k+1)/2]^2≥1-[(k+1)/2]^2
要想f(x)>0恒成立,必须有
1-[(k+1)/2]^2>0
-1