1/sinθ+1/cosθ=(sinθ+cosθ)/(sinθcosθ)=2√2;
sinθ+cosθ=2√2sinθcosθ两端平方得:
1+2sinθcosθ=8(sinθcosθ)²;
即8(sinθcosθ)²-2sinθcosθ-1=0
(4sinθcosθ+1)(2sinθcosθ-1)=0
sinθcosθ=-1/4;或sinθcosθ=1/2;
因为θ∈(π/2,π),所以sinθcosθ
1/sinθ+1/cosθ=(sinθ+cosθ)/(sinθcosθ)=2√2;
sinθ+cosθ=2√2sinθcosθ两端平方得:
1+2sinθcosθ=8(sinθcosθ)²;
即8(sinθcosθ)²-2sinθcosθ-1=0
(4sinθcosθ+1)(2sinθcosθ-1)=0
sinθcosθ=-1/4;或sinθcosθ=1/2;
因为θ∈(π/2,π),所以sinθcosθ