∫1/x(4+x^6)dx
=∫x^2dx/[x^3(4+x^6)]
=1/3∫d(x^3)/[x^3(4+x^6)],令u=x^3
=1/3∫du/[u(4+u^2)]
=1/12∫du[1/u-u/(4+u^2)]
=1/12[∫du/u-0.5∫d(u^2)/(4+u^2)]
=1/12[ln|u|-0.5ln(4+u^2)]+C
=1/24[2ln|x^3|-ln(4+x^6)]+C
∫1/x(4+x^6)dx
=∫x^2dx/[x^3(4+x^6)]
=1/3∫d(x^3)/[x^3(4+x^6)],令u=x^3
=1/3∫du/[u(4+u^2)]
=1/12∫du[1/u-u/(4+u^2)]
=1/12[∫du/u-0.5∫d(u^2)/(4+u^2)]
=1/12[ln|u|-0.5ln(4+u^2)]+C
=1/24[2ln|x^3|-ln(4+x^6)]+C