(1)过点M作MF⊥BC交BD于点F,
∵四边形ABCD是正方形,
∴∠C=90°,
∴FM∥CD,
∴∠NDE=∠MFE,
∴FM=BM,
∵BM=DN,
∴FM=DN,
在△EFM和△EDN中,
∠NDE=∠MFE
∠NED=∠MEF
DN=FM,
∴△EFM≌△EDN,
∴EF=ED,
∴BD-2DE=BF,
根据勾股定理得:BF=根号2BM,
即BD-2DE=根号2BM.
(2)过点M作MF⊥BC交BD于点F,
与(1)证法类似:BD+2DE=BF=根号2BM,
故答案为:BD+2DE=根号2BM.
(3)由(2)知,BD+2DE=根号2BM,BD=根号2BC,
∵DE=根号2
∴CM=2,
∵AB∥CD,
∴△ABF∽△DNF,
∴AF:FD=AB:ND,
∵AF:FD=1:2,
∴AB:ND=1:2,
∴CD:ND=1:2
∴CD:ND=1:2,
CD:(CD+2)=1:2,
∴CD=2,
∴FD=4/3
∴FD:BM=1:3,
∴DG:BG=1:3,
∴DG=2分之根号2