tan(45°+α)=(tan45°+tanα)/(1-tan45°tanα)=(1+tanα)/(1-tanα)=√2
√2(1-tanα)=1+tanα
√2tanα+tanα=√2-1
tanα=(√2-1)/(√2+1)=3-2√2
sin2α=2tanα/(1+tan²α)=(6-4√2)/(1+17-12√2)=1/3[(6-4√2)/(6-4√2)]=1/3
tan(45°+α)=(tan45°+tanα)/(1-tan45°tanα)=(1+tanα)/(1-tanα)=√2
√2(1-tanα)=1+tanα
√2tanα+tanα=√2-1
tanα=(√2-1)/(√2+1)=3-2√2
sin2α=2tanα/(1+tan²α)=(6-4√2)/(1+17-12√2)=1/3[(6-4√2)/(6-4√2)]=1/3