关于统计概率的问题,预测协方差符号

1个回答

  • n=6

    p=0.2,0.6,0.8为p的数值

    q(p)=0.1,0.7,0.2为p的概率

    当p固定时,对二项分布X:

    E(X | p) = np

    E(X^2 | p) = Var(X^2 | p) + (E(X | p))^2 = np(1-p) + (np)^2 = np(1-p+np)

    所以:

    E(X) = E(E(X | p))

    = Σ_{p} (np)*q(p)

    = n Σ_{p} p*q(p)

    = 6(0.2*0.1 + 0.6*0.7 + 0.8*0.2)

    = 3.6

    E(X^2) = E(E(X^2 | p))

    = Σ_{p} (np(1-p+np))*q(p)

    = n Σ_{p} p(1-p+np)*q(p)

    = 6(0.2*(1-0.2+6*0.2)*0.1 + 0.6*(1-0.6+6*0.6)*0.7 + 0.8*(1-0.8+6*0.8)*0.2)

    = 15.12

    所以:

    Var(X) = E(X^2) - (E(X))^2 = 15.12 - 3.6^2 = 2.16

    协方差:

    因为p增大时,E(X)也增大;p减小时,E(X)也减小,所以协方差是正数.

    如果你不放心,也可以算出协方差:

    Cov(X,p) = E(Xp) - E(X) E(p)

    其中:E(Xp) = E(Xp | p) = Σ_{p} (E(X | p)*p)*q(p) = Σ_{p} (np^2)*q(p)

    所以:

    Cov(X,p) = Σ_{p} (np^2)*q(p) - (Σ_{p} (np)*q(p)) * (Σ_{p} p*q(p))

    = n (Σ_{p} (p^2)*q(p) - (Σ_{p} p*q(p)) * (Σ_{p} p*q(p)))

    = n Var(p)

    > 0

    或者直接算出协方差的值:

    E(Xp) = 6(0.2^2*0.1 + 0.6^2*0.7 + 0.8^2*0.2) = 2.304

    E(p) = 0.2*0.1 + 0.6*0.7 + 0.8*0.2 = 0.6

    所以:Cov(X,p) = 2.304 - 3.6*0.6 = 0.144 > 0