如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两

1个回答

  • 解题思路:先求出正比例函数的解析式,再求出点B的坐标,从而可得一次函数解析式y=2x-5,求出其与x轴的交点坐标,从而求出直线与x轴围成三角形AOD的面积为2.5×3÷2=3.75.

    过A作AC⊥x轴于C点

    则AC=3,OC=4,所以OA=5=OB

    则B(0,-5)(1分)

    设直线AO:y=nx过A(4,3)

    则3=4n,n=0.75(2分)

    所以y=0.75x(3分)

    设直线AB:y=kx+b过A(4,3)、B(0,-5)

    则:

    b=−5

    4k+b=3.

    解之得:

    b=−5

    k=2.(4分)

    所以:y=2x-5(5分)

    令y=0,得x=2.5

    则D(2.5,0)(6分)

    两直线与x轴围成三角形AOD的面积为2.5×3÷2=3.75(7分)

    点评:

    本题考点: 两条直线相交或平行问题;待定系数法求一次函数解析式.

    考点点评: 主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.

相关问题