:(1)∵AE=MC,∴BE=BM,∴∠BEM=∠EMB=45°,∴∠AEM=135°,
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°
在△AEM和△MCN中:∵∴△AEM≌△MCN,∴AM=MN
(2)仍然成立.
在边AB上截取AE=MC,连接ME
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°.
∵AE=MC,∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°.
∵CN平分∠ACP,∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,∴AM=MN