需证明对于任给ε>0,存在R>0,使得当X>0时,有[(1+x^3)/2x^3-1/2]的绝对值
用极限定义证明lim(x→∞)(1+x^3)/2x^3=1/2 过程要详细,在线坐等,
4个回答
相关问题
-
求极限lim(x→4)√(2x+1)-3/(√x-2),要详细过程~
-
用定义证明极限 求证:x→1 lim 3x-1≠3.
-
用函数极限定义证明极限lim(2X+3)/X=2(X→无穷 )
-
根据函数极限定义证明: lim(x~1)x^2-3x+2/(x_1)=-1
-
lim(x-3)/3=0(x趋近于3)证明极限要详细过程
-
利用极限定义证明:lim根号下(x^2-1)=跟3 x→2
-
函数的极限 用定义证明 lim (x-1)/(x^2-1)=1/2 x→1
-
用函数极限的定义证明lim3x^2-1/x^2+4=3(X趋近于无穷)
-
x →0时lim(1+x^2)^cot^2x求极限要详细过程.
-
求极限lim(x→4) (√(2x+1)-3)/(√(x-2)-√2)要过程