证明:∵sinA+sin(90°-A)+1=sinA+cosA+1
=2sin(A/2)cos(A/2)+2[cos(A/2)]^2
=2cos(A/2)[sin(A/2)+cos(A/2)]
sinA-sin(90°-A)+1=sinA-cosA+1
=2sin(A/2)cos(A/2)+2[sin(A/2)]^2
=2sin(A/2)[cos(A/2)+sin(A/2)]
∴[sinA+sin(90°-A)+1]/[sinA-sin(90°-A)+1]=[2cos(A/2)]/[2sin(A/2)]=cot(A/2)
∴[sinA+sin(90°-A)+1]/[sinA-sin(90°-A)+1]=cot(A/2)