方括号代表根号(1)[x+2][2x+3]-x=2(2)(x/x+1)平方-4x/x+1+3=0(3)解方程组:y-x=

2个回答

  • (1)[x+2][2x+3]-x=2

    √(x+2)(2x+3)=2+x

    等式两边平方,(x+2)(2x+3)=(2+x)²

    2x²+7x+6=x²+4x+4

    x²+3x+2=0

    (x+2)(x+1)=0

    x=-2,或x=-1

    因为 x+2≥0,2x+3≥0.

    所以,x≥-3/2

    所以,x=-1

    (2)(x/x+1)²-4x/x+1+3=0

    等式两边同时乘以(x+1)²,原式变为:

    x²-4x(x+1)+3(x+1)²=0

    [x-3(x+1)][x-(x+1)]=0

    即:x-3(x+1)=0

    x=1/2

    (3)解方程组:y-x=1,x²-xy-2y²=0

    x²-xy-2y²=0

    因式分解,有(x-2y)(x+y)=0

    因为,y-x=1;即:x=y-1

    所以:(x-2y)(x+y)=0

    =>(y-1-2y)(y-1+y)=0

    解之,y=-1,或y=1/2

    当y=-1时,x=-1-1=-2

    当y=1/2时,x=1/2-1=-1/2

    (4)先化简,再求值:4/x²-4+2/x+2-1/x-2,其中x=√3-1

    4/(x²-4)+2/(x+2)-1/(x-2)

    =4/(x+2)(x-2)+2/(x+2)-1/(x-2)

    =2[1/(x+2)-1/(x-2)]+2/(x+2)-1/(x-2)

    =4/(x+2)-3/(x-2)

    =[4(x-2)-3(x+2)]/(x+2)(x-2)

    =1/(x+2)

    将x=√3-1代入,有

    原式=1/(x+2)

    =1/(√3-1)

    整理得=(√3+1)/2

    (5)已知x=1/(√3-2),y=1/(√3+2),求x²y+xy²的值

    x²y+xy²=xy(x+y)

    =[1/(√3-2)+1/(√3+2)]/(√3-2)(√3+2)

    =(√3+2)+(√3-2)

    =2√3