椭圆
x 2
25 +
y 2
9 =1 中.a=5,b=3,c=4,故A(-4,0)和C(4,0)是椭圆的两个焦点,
∴AB+BC=2a=10,AC=8,由正弦定理得
a
sinA =
b
sinB =
c
sinC =2r,
∴
sinA+sinC
sinB =
a+c
b =
AB + BC
AC =
10
8 =
5
4 ,
故选 D.
椭圆
x 2
25 +
y 2
9 =1 中.a=5,b=3,c=4,故A(-4,0)和C(4,0)是椭圆的两个焦点,
∴AB+BC=2a=10,AC=8,由正弦定理得
a
sinA =
b
sinB =
c
sinC =2r,
∴
sinA+sinC
sinB =
a+c
b =
AB + BC
AC =
10
8 =
5
4 ,
故选 D.