设抛物线C的顶点在原点,焦点F在x轴上,

1个回答

  • 抛物线C上横坐标为3的点到C的准线的距离等于4.

    即有x+p/2=4,3+p/2=4,p=2

    即抛物线方程是y^2=4x.

    F坐标是(1,0),则设AB方程是x=my+1.

    代入得到:y^2=4my+4,y^2-4my-4=0

    y1+y2=4m,y1y2=-4

    x1x2=y1^2y2^2/16=1

    x1+x2=m(y1+y2)+2=4m^2+2

    NA^2*NB^2=[(3-x1)^2+y1^2][(3-x2)^2+y2^2]

    =(9-6x1+x1^2+4x1)(9-6x2+x2^2+4x2)

    =(9-2x1+x1^2)(9-2x2+x2^2)

    =81-18x2+9x2^2-18x1+4x1x2-2x1x2^2+9x1^2-2x1^2x2+x1^2x2^2

    =81-18(x1+x2)+9(x1^2+x2^2)+4*1-2x1x2(x1+x2)+1

    =86-18(4m^2+2)+9[(4m^2+2)^2-2]

    =86-72m^2-36+9(16m^4+16m^2+4)-18

    =144m^4+72m^2+68

    =144(m^2+1/4)^2+68-9

    故当m^2=0时有最小值是:68

    即NA*NB的最小值是:根号68=2根号17