解题思路:要求∠EDF的度数,只需求出∠BDE和∠FDC的度数即可,由FD⊥BC,得∠FDC=90°;而∠BDE在Rt△BDE中,故只需求出∠B的度数.因∠B=∠C,只需求出∠C的度数即可.因∠AFD是△CDF的外角,∠AFD=158°∴∠C=∠AFD-∠FDC=158°-90°=68°.
∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD-∠FDC=158°-90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°-∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°-∠BDE-∠FDC=18...
点评:
本题考点: 三角形内角和定理.
考点点评: 考查三角形内角和定理,外角性质,垂直定义等知识.