f(x)=log4(x-2)+log4(m-x)-log4(x-1)
=log4(x-2)(m-x)/(x-1)=0
即有(x-2)(m-x)/(x-1)=1
mx-x^2-2m+2x=x-1
x^2-(1+m)x+2m-1=0有二个不相等的实根,则有判别式>0
即有(1+m)^2-4(2m-1)>0
1+2m+m^2-8m+4>0
m^2-6m+5>0
(m-1)(m-5)>0
m>5或m
f(x)=log4(x-2)+log4(m-x)-log4(x-1)
=log4(x-2)(m-x)/(x-1)=0
即有(x-2)(m-x)/(x-1)=1
mx-x^2-2m+2x=x-1
x^2-(1+m)x+2m-1=0有二个不相等的实根,则有判别式>0
即有(1+m)^2-4(2m-1)>0
1+2m+m^2-8m+4>0
m^2-6m+5>0
(m-1)(m-5)>0
m>5或m