考研数学题..极值拐点问题,在线等,急急急

1个回答

  • 第一,导数等于0的点不一定就是极值点.

    我们把x=1带入到等式中去可以得到 f‘’(1)=-3f'(1)^2=0,这个就可以肯定的说,f(1)点一定不是极值点,二阶导数=0的点一定不是极值点.所以AB肯定不选,然后f''(x)+3[f'(x)]^2=xlnx写为f''(x)=-3[f'(x)]^2+xlnx,可见右边的导数是存在的吧,所以可以断定f(x)一定具有3阶导数,所以同时求导,再把x=1带入,就可以得到f'''(1)=1,于是3阶导数>0,所以在x=1点一定为拐点