设椭圆上一点为(√2cosθ,sinθ)
则点(a,0)到椭圆(x^2/2)+y^2=1上的点之间的最短距离.即求
d^2=(a-√2cosθ)^2+(sinθ)^2的最小值
d^2=(a-√2cosθ)^2+(sinθ)^2
=a^2-2√2acosθ+2(cosθ)^2+(sinθ)^2
=a^2-2√2acosθ+2(cosθ)^2+1-(cosθ)^2
=(cosθ)^2-2√2acosθ+1+a^2
=(cosθ-√2a)^2+1-a^2
讨论,当a>√2/2,显然
则cosθ=1时,d^2取得最小值.
则d^2=(a^2-2√2a+2)
继续讨论,
当a>√2时,d最小值为a-√2
当√2/2