1) 在抛物线y=(k-1)x²+2kx+k+1中,令 x = 0,即可获得函数与 y 轴的
交点 C 的坐标(0,k+1),也就是三角形ABC的高为|k+1|
2) 用求根公式求出y=(k-1)x²+2kx+k+1 的两个根,即与 x 轴的两个交点坐标
△ = (2k)^2 - 4(k-1)(k+1)
= 1
x1 = (-2k-1)/[2(k-1)]
x2 = (-2k+1)/[2(k-1)]
x 轴上两交点的距离AB = |x1-x2| = |1/(1-k)|
3)因为△ABC的面积为 4 ,则
|k+1|*|1/(1-k)|/2 = 4
(k+1)/(1-k)/2 = 4 或 (k+1)/(1-k)/2 = -4
k1 = 7/9 k2 = 9/7