已知抛物线y=(k-1)x²+2kx+k+1,若抛物线与x轴交于A、B,与Y轴交于点C,且△ABC的面积为4,

1个回答

  • 1) 在抛物线y=(k-1)x²+2kx+k+1中,令 x = 0,即可获得函数与 y 轴的

    交点 C 的坐标(0,k+1),也就是三角形ABC的高为|k+1|

    2) 用求根公式求出y=(k-1)x²+2kx+k+1 的两个根,即与 x 轴的两个交点坐标

    △ = (2k)^2 - 4(k-1)(k+1)

    = 1

    x1 = (-2k-1)/[2(k-1)]

    x2 = (-2k+1)/[2(k-1)]

    x 轴上两交点的距离AB = |x1-x2| = |1/(1-k)|

    3)因为△ABC的面积为 4 ,则

    |k+1|*|1/(1-k)|/2 = 4

    (k+1)/(1-k)/2 = 4 或 (k+1)/(1-k)/2 = -4

    k1 = 7/9 k2 = 9/7