sinAcosB/cosAsinB=[(√2)sinC-sinB]/sinB
sinAcosB=[(√2)sinC-sinB]cosA=(√2)sinCcosA-sinBcosA
sinAcosB+cosAsinB=(√2)sinCcosA
sin(A+B)=(√2)sinCcosA=sinC
(√2)cosA=1
cosA=√2/2
A=45`
sinAcosB/cosAsinB=[(√2)sinC-sinB]/sinB
sinAcosB=[(√2)sinC-sinB]cosA=(√2)sinCcosA-sinBcosA
sinAcosB+cosAsinB=(√2)sinCcosA
sin(A+B)=(√2)sinCcosA=sinC
(√2)cosA=1
cosA=√2/2
A=45`