f(x)=(x^n-x^-n)/(x^n+x^-n)
=[x^(2n)-1]/[x^(2n)+1]
=1-2/[x^(2n)+1]
因x>0,n∈N+,故随着x的增大,x^(2n)+1增大,2/[x^(2n)+1]减小,1-2/[x^(2n)+1]增大.故
f(x)在(0,+∞)上的单调递增.
f(x)=(x^n-x^-n)/(x^n+x^-n)
=[x^(2n)-1]/[x^(2n)+1]
=1-2/[x^(2n)+1]
因x>0,n∈N+,故随着x的增大,x^(2n)+1增大,2/[x^(2n)+1]减小,1-2/[x^(2n)+1]增大.故
f(x)在(0,+∞)上的单调递增.