tanB=AD/BD
cos∠DAC=AD/AC
tanB=cos∠DAC
所以AC=BD
sinC=12/13,
设AD=x,则sinC=AD/AC=x/AC=12/13
AC=13x/12
cosC=√(1-sin²C)=5/13
CD/AC=5/13, CD=5AC/13=5x/12
BC=BD+CD=AC+CD
所以12=13X/12+5x/12=18x/12
AD=x=8
tanB=AD/BD
cos∠DAC=AD/AC
tanB=cos∠DAC
所以AC=BD
sinC=12/13,
设AD=x,则sinC=AD/AC=x/AC=12/13
AC=13x/12
cosC=√(1-sin²C)=5/13
CD/AC=5/13, CD=5AC/13=5x/12
BC=BD+CD=AC+CD
所以12=13X/12+5x/12=18x/12
AD=x=8