若函数y=a^x(a>1)的定义域与值域均为[m,n],则a的取值范围是...

4个回答

  • 函数f(x)=a^x(a>1)的定义域和值域都是[m,n],而函数f(x)=a^x(a>1)是单调的,因此,f(m)=m,f(n)=n.因此f(x)=x即a^x=x必须至少有一解,两边取对数分离参数得:lna=(lnx)/x,上述问题即,直线y=lna与函数y=(lnx)/x需至少有一个交点,已知a>1,而函数y=(lnx)/x的值域为(-∞,1/e](这个问题如果你不会,我们可以看常见函数y=(lnx)/x的版块研究:求导:得y’=(1-lnx)/x^2,至此很容易得到,函数在(0,e)上单调递增,在(e,+∞)上单调递减,因此函数在x=e处取得最大值1/e.),因此0