如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)
可得出SE=SF=SG
S'P=S'Q=S'REQ=FP=GR (先证出相等)
AB⊥S'SAB⊥S'F→AB⊥△SPS'→ AB⊥S'P
同理证得BC⊥S'QAC⊥S'R(又证出垂直)
所以S’是底面三角形的内心
如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)
可得出SE=SF=SG
S'P=S'Q=S'REQ=FP=GR (先证出相等)
AB⊥S'SAB⊥S'F→AB⊥△SPS'→ AB⊥S'P
同理证得BC⊥S'QAC⊥S'R(又证出垂直)
所以S’是底面三角形的内心