在R上,x>=0是不是闭集?R的全体难道既开又闭?
2个回答
x>=0是闭集
R的全体是既开又闭
相关问题
下面是例题:{“E1表示实数全体,R1表示由E1中的有限个有限区间(不论是开的、闭的、还是半开半闭的)的和集全体所成的集
连续 闭集设 f 是一个在R上连续的函数,{f(x):2≤x≤3}一定是闭集吗?因为没有定理支持,请给个范例:闭集的像集
数分证明:开集与闭集问题.有限个开集交集仍是开集,闭集并集仍是闭集,举例说明:无限个开集交集未必是开集,闭集并集未必是闭
在R^n度量空间里,闭集是不是一定有界?紧集和闭集的区别是?对于集合E包含于R^n,X.∈R^n,E的接触点和聚点有什么
数学分析中有关开集闭集的问题!开集是否就是闭集!
(2007•安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-
(2007•安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-
(2007•安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-
(2007•安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-
(2007•安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-