令m-1=n
则原式等于
(3-根号(1-n))/(1+根号(n)),0≤t≤1
令n=sin²θ
则原式等于
(3-cosθ)/(1+sinθ),0≤θ≤π/2
由万能公式:
设tan(θ/2)=t,0≤t≤1
sinθ=2t/(1+t²)
cosθ=(1-t²)/(1+t²)
原式=(4t²+2)/(t²+2t+1)=4-(8t+2)/(t²+2t+1)
令f(t)=4-(8t+2)/(t²+2t+1)
f(t)在[0,1/2]单调减,在[1/2,1]单调增
f(0)=2,f(1)=3/2,f(1/2)=4/3
∴取值范围为[4/3,2]