令Sn为an前n项和,Sn=n-an,S(n-1)=n-1-a(n-1),两式相减,an=1-an+a(n-1),2(an-1)=a(n-1)-1,所以an-1是公比为1/2的等比数列,a1-1=-1/2,所以an-1=(-1/2)*(1/2)^(n-1)=-(1/2)^n,bn=(2-n)*(-(1/2)^n)=(n-2)*(1/2)^n,因为t^2-1/4t>=bn,b(n+1)-bn=(1/2)^(n+1)*(3-n),所以b3,b4为bn最大值,t^2-1/4t>=1/8,t范围是(-∞,-1/4)∪(1/2,∞)
已知a1+a2+a3+.+an=n-an 求证an-1为等比数列 令bn=(2-n)(an-1) 如果对任意n
2个回答
相关问题
-
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
-
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
-
数列{an}满足a1=1,an^2=(2an+1)a(n+1),令bn=lg(1+1/an),求证{bn}为等比数列
-
(1)在数列{an},a1=2,an=2an-1+2n+1(n≥2,n∈N*),令{bn}= an/2n,求证:{bn}
-
已知数列an中,a1=2,an+1=4an-3n+1,bn=an-n,求证数列bn为等比数列,求an前n项和
-
已知数列{an}满足a1=1,a2=3,an+1=3an-2an-1(n≥2且n∈N‘’),令bn=
-
已知数列an,a1=1,an+2a(n+1)+6n+4=0,若bn=an+2n,(1)求证bn是等比数列(2)求数列an
-
已知数列{an}和{bn}满足a1=b1且对任意n∈N都有an+bn=1,a(n+1)/an=bn/1-an^2
-
在数列}an}中,a1=2,an=2an-1+2^n+1(n》=2) 令bn=an/2^n,求证{bn}是等差数列.
-
已知数列{an}满足a1=2,a2=2,a(n+2)=[a(n+1)+an]/2,n∈整数,令bn=a(n+1)-an,