证明:【法一】1、设 |a+b|≠0
则,|a|+|b|》|a+b|>0
所以,1/(|a|+|b|)《1/|a+b|
所以,1/(|a|+|b|)+1《1/|a+b| +1
所以,(1+|a|+|b|)/(|a|+|b|)《(1+|a+b| )/|a+b|
所以,上式倒过来得:,(|a|+|b|)/(1+|a|+|b|)》|a+b| /(1+|a+b|)
即:|a+b|/1+|a+b|
证明:【法一】1、设 |a+b|≠0
则,|a|+|b|》|a+b|>0
所以,1/(|a|+|b|)《1/|a+b|
所以,1/(|a|+|b|)+1《1/|a+b| +1
所以,(1+|a|+|b|)/(|a|+|b|)《(1+|a+b| )/|a+b|
所以,上式倒过来得:,(|a|+|b|)/(1+|a|+|b|)》|a+b| /(1+|a+b|)
即:|a+b|/1+|a+b|