已知点p(x,y)在圆xˆ2+yˆ2-6x-6y+14=0上,求xˆ2+yˆ2+

1个回答

  • x²+y²-6x-6y+14=0→(x-3)²+(y-3)²=2²,

    依圆的参数方程,点P可设为(3+2cosθ,3+2sinθ).

    ∴x²+y²+2x+3

    =(3+2cosθ)²+(3+2sinθ)²+2(3+2cosθ)+3

    =31+20[(4/5)cosθ+(3/5)sinθ]

    =31+20sin(θ+φ) (其中tanφ=4/3)

    所以,

    sin(θ+φ)=1时,(x²+y²+2x+3)|max=51;

    sin(θ+φ)=-1时,(x²+y²+2x+3)|min=11.