x²+y²-6x-6y+14=0→(x-3)²+(y-3)²=2²,
依圆的参数方程,点P可设为(3+2cosθ,3+2sinθ).
∴x²+y²+2x+3
=(3+2cosθ)²+(3+2sinθ)²+2(3+2cosθ)+3
=31+20[(4/5)cosθ+(3/5)sinθ]
=31+20sin(θ+φ) (其中tanφ=4/3)
所以,
sin(θ+φ)=1时,(x²+y²+2x+3)|max=51;
sin(θ+φ)=-1时,(x²+y²+2x+3)|min=11.
x²+y²-6x-6y+14=0→(x-3)²+(y-3)²=2²,
依圆的参数方程,点P可设为(3+2cosθ,3+2sinθ).
∴x²+y²+2x+3
=(3+2cosθ)²+(3+2sinθ)²+2(3+2cosθ)+3
=31+20[(4/5)cosθ+(3/5)sinθ]
=31+20sin(θ+φ) (其中tanφ=4/3)
所以,
sin(θ+φ)=1时,(x²+y²+2x+3)|max=51;
sin(θ+φ)=-1时,(x²+y²+2x+3)|min=11.