B1=3/4 B2=4/5 B3=5/6 B4=6/7
Bn=(n+2)/(n+3) 数学归纳法 因为1-An=Bn 1-Bn=An 所以B(n+1)=1/(2-Bn)易证
易推出An=1/(n+3) 裂项相消得出Sn=1/4-1/(n+4)=n/(4(n+4))
带入不等式得出A小于((n+2)(n+4))/((n+3)n)
右边打开再分离 等于1+3/(n+3)+8/((n+3)n) 它的最小值为n无穷大时 即1
所以A=1即可满足条件
B1=3/4 B2=4/5 B3=5/6 B4=6/7
Bn=(n+2)/(n+3) 数学归纳法 因为1-An=Bn 1-Bn=An 所以B(n+1)=1/(2-Bn)易证
易推出An=1/(n+3) 裂项相消得出Sn=1/4-1/(n+4)=n/(4(n+4))
带入不等式得出A小于((n+2)(n+4))/((n+3)n)
右边打开再分离 等于1+3/(n+3)+8/((n+3)n) 它的最小值为n无穷大时 即1
所以A=1即可满足条件