数列1×4,2×5,3×6,…,n×(n+3),…则它的前n项和Sn=______.

2个回答

  • 解题思路:由题设条件知:an=n×(n+3)=n2+3n,Sn=(1+3×1)+(4+3×2)+(9+3×3)+…+(n2+3n)=(12+22+32+…+n2)+3(1+2+3+…+n)=

    n(n+1)(2n+1)

    6

    +

    3n(n+1)

    2

    ;化简可得答案.

    ∵an=n×(n+3)=n2+3n,

    ∴Sn=a1+a2+a3+…+an

    =(1+3×1)+(4+3×2)+(9+3×3)+…+(n2+3n)

    =(12+22+32+…+n2)+3(1+2+3+…+n)

    =

    n(n+1)(2n+1)

    6+

    3n(n+1)

    2

    =

    n(n+1)(n+5)

    3.

    答案:

    n(n+1)(n+5)

    3.

    点评:

    本题考点: 数列的求和.

    考点点评: 本题考查数列的性质和应用,解题时要认真审题,仔细求解.