解法一:其实这个数列是一个二次函数,只不过由一些点构成
它的对称轴为k/2,开口向上,如图
要使它在[1,10]上递减,就是要 k/2>=10 k>=20
k=20时,k/2=10
但要注意,n取整数,所以
如果 k/2=9.5,那么n9=n10, k/2<9.5 则n9
因此k/2>9.5 k>19 k∈(19,+∞)这是函数与数列的的一点区别
解法二:对,an=n^2-kn求导得
an'=2n-k,令2n-k=<0(恒成立)
又2n-k∈[2-k,20-k]
所以 20-k=<0
同理,n取整数,k∈(19,+∞)
解法三:方法和楼主的相似,但为什么答案不一样?
因为楼主忽略了一个细节
数列在n∈[1,10]上递减
如果用an+1>an来计算,那么算的是在n+1∈[1,10]上的递减结果
所以应该这样列式
an
n^2-kn 化简得 k>2n-1
依题意,2n-1∈[1,19]
所以k>19
三种方法都有一些需要顾及到的小细节,总结下来,要注意函数于数列(线与点)的区别;代入计算时要知道你要算的是什么(是带an,an-1还是an,an+1)
祝愉快